
LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

LDoc
Contents

Introduction
Commenting Conventions
See References
Module Tags
Sections
Differences from LuaDoc
Adding new Tags
Inferring more from Code
Extension modules written

in C
Moonscript Support
Basic Usage
Markdown Support
Processing Single Modules
Getting Help about a

Module
Anatomy of a LDoc-

generated Page
Customizing the Page
Examples
Readme files
Tag Modifiers
Fields allowed in `config.ld`
Annotations and Searching

for Tags
Generating HTML
Internal Data

Representation

Topics

Scripts

Examples

Topic doc.md
LDoc, a Lua Documentation Tool

Introduction
LDoc is a second-generation documentation tool that can be used as a replacement for LuaDoc. It arose out
of my need to document my own projects and only depends on the Penlight libraries.

It is mostly compatible with LuaDoc, except that certain workarounds are no longer needed. For instance, it is
not so married to the idea that Lua modules should be defined using the module function; this is not only a
matter of taste since this has been deprecated in Lua 5.2.

Otherwise, the output is very similar, which is no accident since the HTML templates are based directly on
LuaDoc. You can ship your own customized templates and style sheets with your own project, however. You
have an option to use Markdown to process the documentation, which means no ugly HTML is needed in doc
comments. C/C++ extension modules may be documented in a similar way, although function names cannot be
inferred from the code itself.

LDoc can provide integrated documentation, with traditional function comments, any documents in Markdown
format, and specified source examples. Lua source in examples and the documents will be prettified.

Although there are a fair number of command-line options, the preferred route is to write a config.ld
configuration file in Lua format. By convention, if LDoc is simply invoked as ldoc . it will read this file first. In
this way, the aim is to make it very easy for end-users to build your documentation using this simple command.

Commenting Conventions
LDoc follows the conventions established by Javadoc and later by LuaDoc.

Only ‘doc comments’ are parsed; these can be started with at least 3 hyphens, or by a empty comment line with
at least 3 hypens:

You can also use Lua block comments:

Any module or script must start with a doc comment; any other files are ignored and a warning issued. The
only exception is if the module starts with an explicit module statement.

All doc comments start with a summary sentence, that ends with a period or a question mark. An optional
description may follow. Normally the summary sentence will appear in the module contents.

After this descriptive text, there will typically be tags. These follow the convention established by Javadoc and
widely used in tools for other languages.

doc.md

ldoc

colon.lua
four.lua
list.moon
multiple.lua
mylib.c
three.lua

 --- summary.

 -- Description; this can extend over

 -- several lines

 -- This will also do.

 --[[--

 Summary. A description

 ...;

]]

 --- foo explodes text.

 -- It is a specialized splitting operation on a string.

 -- @param text the string

 -- @return a table of substrings

 function foo (text)

 end

http://keplerproject.github.com/luadoc/
https://github.com/stevedonovan/Penlight
http://nilnor.github.com/textui/docs/
http://stevedonovan.github.io/ldoc/index.html
http://stevedonovan.github.io/ldoc/examples/colon.lua.html
http://stevedonovan.github.io/ldoc/examples/four.lua.html
http://stevedonovan.github.io/ldoc/examples/list.moon.html
http://stevedonovan.github.io/ldoc/examples/multiple.lua.html
http://stevedonovan.github.io/ldoc/examples/mylib.c.html
http://stevedonovan.github.io/ldoc/examples/three.lua.html

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

There are also ‘tparam’ and ‘treturn’ which let you specify a type:

There may be multiple ‘param’ tags, which should document each formal parameter of the function. For Lua,
there can also be multiple ‘return’ tags

This is the common module style used in Lua 5.1, but it’s increasingly common to see less ‘magic’ ways of
creating modules in Lua. Since module is deprecated in Lua 5.2, any future-proof documentation tool needs to
handle these styles gracefully:

Here the name of the module is explicitly given using the ‘module’ tag. If you leave this out, then LDoc will infer
the name of the module from the name of the file and its relative location in the filesystem; this logic is also
used for the module(...) idiom. (How this works and when you need to provide extra information is discussed
later.)

It is common to use a local name for a module when declaring its contents. In this case the ‘alias’ tag can tell
LDoc that these functions do belong to the module:

 -- @tparam string text the string

 -- @treturn {string,...} a table of substrings

 --- solvers for common equations.

 module("solvers", package.seeall)

 --- solve a quadratic equation.

 -- @param a first coeff

 -- @param b second coeff

 -- @param c third coeff

 -- @return first root, or nil

 -- @return second root, or imaginary root error

 function solve (a,b,c)

 local disc = b^2 - 4*a*c

 if disc < 0 then

 return nil,"imaginary roots"

 else

 disc = math.sqrt(disc)

 return (-b + disc)/2*a,

 (-b - disc)/2*a

 end

 end

 ...

 --- a test module

 -- @module test

 local test = {}

 --- first test.

 function test.one()

 ...

 end

 ...

 return test

 --- another test.

 -- @module test2

 -- @alias M

 local M = {}

 -- first test.

 function M.one()

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

M and _M are used commonly enough that LDoc will recognize them as aliases automatically, but ‘alias’ allows
you to use any identifier.

LDoc tries to deduce the function name and the formal parameter names from examining the code after the
doc comment. It also recognizes the ‘unsugared’ way of defining functions as explicit assignment to a variable:

Apart from exported functions, a module usually contains local functions. By default, LDoc does not include
these in the documentation, but they can be enabled using the --all flag. They can be documented just like
‘public’ functions:

Modules can of course export tables and other values. The classic way to document a table looks like this:

Here the kind of item is made explicit by the ‘table’ tag; tables have ‘fields’ in the same way as functions have
parameters.

This can get tedious, so LDoc will attempt to extract table documentation from code:

The rule followed here is NAME = <table-constructor>. If LDoc can’t work out the name and type from the
following code, then a warning will be issued, pointing to the file and location.

Another kind of module-level type is ‘field’, such as follows:

That is, a module may contain exported functions, local functions, tables and fields.

When the code analysis would lead to the wrong type, you can always be explicit.

The order of tags is not important, but as always, consistency is useful. Tags like ‘param’ and ‘return’ can be
specified multiple times, whereas a type tag like ‘function’ can only occur once in a comment. The basic rule is

 ..

 end

 return M

 --- second test.

 M.two = function(...) ... end

 --- it's clear that boo is local from context.

 local function boo(...) .. end

 local foo

 --- we need to give a hint here for foo

 -- @local here

 function foo(...) .. end

 --- a useful table of constants

 -- @field alpha first correction

 -- @field beta second correction

 -- @field gamma fudge factor

 -- @table constants

 --- a useful table of constants

 M.constants = {

 alpha = 0.23, -- first correction

 beta = 0.443, -- second correction

 gamma = 0.01 -- fudge factor

 }

 --- module version.

 M._VERSION = '0.5'

 --- module contents.

 -- @field _CONTENTS

 M._CONTENTS = {constants=true,one=true,...}

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

that a single doc comment can only document one entity.

Since 1.3, LDoc allows the use of colons instead of @.

However, you must either use the --colon flag or set colon=true in your config.ld.

In this style, types may be used directly if prefixed with ‘!’ or ‘?’ (for type-or-nil)

(see colon.lua, rendered here)

By default, LDoc will process any file ending in ‘.lua’ or ‘.luadoc’ in a specified directory; you may point it to a
single file as well. A ‘project’ usually consists of many modules in one or more packages. The generated
index.html will point to the generated documentation for each of these modules.

If only one module or script is documented for a project, then the index.html generated contains the
documentation for that module, since an index pointing to one module would be redundant.

LDoc has a two-layer hierarchy; underneath the project, there are modules, scripts, classes (containing code)
and examples and ‘topics’ (containing documentation). These then contain items like functions, tables, sections,
and so forth.

If you want to document scripts, then use @script instead of @module. New with 1.4 is @classmod which is a
module which exports a single class.

See References
The tag ‘see’ is used to reference other parts of the documentation, and ‘usage’ can provide examples of use;
there can be multiple such tags:

Here it’s assumed that ‘split’ is a function defined in the same module. If you wish to link to a function in
another module, then the reference has to be qualified.

References to methods use a colon: myclass:method; this is for instance how you would refer to members of a
@type section.

The example at tests/complex shows how @see references are interpreted:

You may of course use the full name of a module or function, but can omit the top-level namespace – e.g. can
refer to the module util and the function display.display_that directly. Within a module, you can directly use
a function name, e.g. in display you can say display_this.

What applies to functions also applies to any module-level item like tables. New module-level items can be
defined and they will work according to these rules.

If a reference is not found within the project, LDoc checks to see if it is a reference to a Lua standard function

 --- a simple function.

 -- string name person's name

 -- int: age age of person

 -- !person: person object

 -- treturn: ?string

 -- function check(name,age)

 -- split a string in two.

 -- @param s the string

 -- @param delim the delimiter (default space)

 -- @return first part

 -- @return second part

 -- @usage local hello,world = split2("hello world")

 -- @see split

 funtion split2(s,delim) .. end

 complex.util.parse

 complex.convert.basic

 complex.util

 complex.display

 complex

http://stevedonovan.github.io/ldoc/examples/colon.lua.html#
http://stevedonovan.github.io/ldoc/examples/colon

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

or table, and links to the online Lua manual. So references like ‘table.concat’ are handled sensibly.

References may be made inline using the @{ref} syntax. This may appear anywhere in the text, and is more
flexible than @see. In particular, it provides one way to document the type of a parameter or return value when
that type has a particular structure:

@{ref} is very useful for referencing your API from code samples and readme text.

The link text can be changed from the default by the extended syntax @{ref|text}.

You can also put references in backticks, like \`stdvars\`. This is commonly used in Markdown to indicate
code, so it comes naturally when writing documents. It is controlled by the configuration variable
backtick_references or the backtick format; the default is true if you use Markdown in your project, but can
be specified explicitly in config.ld.

To quote such references so they won’t be expanded, say @{\ref}.

Custom @see References
It’s useful to define how to handle references external to a project. For instance, in the luaposix project we
wanted to have man references to the corresponding C function:

These see references always have this particular form, and the task is to turn them into online references to
the Linux manpages. So in config.ld we have:

‘^(%a+)%((%d)%)$’ both matches the pattern and extracts the name and its section. Then it’s a simple matter
of building up the appropriate URL. The function is expected to return link text and link source and the patterns
are checked before LDoc tries to resolve project references. So it is best to make them match as exactly as
possible.

Module Tags
LDoc requires you to have a module doc comment. If your code style requires license blocks that might look
like doc comments, then set boilerplate=true in your configuration and they will be skipped.

 -- extract standard variables.

 -- @param s the string

 -- @return @{stdvars}

 function extract_std(s) ... end

 -- standard variables.

 -- Use @{extract_std} to parse a string containing variables,

 -- and @{pack_std} to make such a string.

 -- @field length

 -- @field duration

 -- @field viscosity

 -- @table stdvars

 -- raise a signal on this process.

 -- @see raise(3)

 -- @int nsig

 -- @return integer error cod

 function raise (nsig)

 end

 local upat = "http://www.kernel.org/doc/man-pages/online/pages/man%s/%s.%s.html"

 custom_see_handler('^(%a+)%((%d)%)$',function(name,section)

 local url = upat:format(section,name,section)

 local name = name .. '(' ..section..')'

 return name, url

 end)

https://github.com/luaposix/luaposix

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

This comment does not have to have an explicit @module tag and LDoc continues to respect the use of
module().

There are three types of ‘modules’ (i.e. ‘project-level’); module, a library loadable with require(), script, a
program, and classmod which is a class implemented in a single module.

There are some tags which are only useful in module comments: author,copyright, license and release.
These are presented in a special Info section in the default HTML output.

The @usage tag has a somewhat different presentation when used in modules; the text is presented formatted
as-is in a code font. If you look at the script ldoc in this documentation, you can see how the command-line
usage is shown. Since coding is all about avoiding repetition and the out-of-sync issues that arise, the @usage
tag can appear later in the module, before a long string. For instance, the main script of LDoc is ldoc.lua and
you will see that the usage tag appears on line 36 before the usage string presented as help.

@export is another module tag that is usually ‘detached’. It is for supporting modules that wish to explicitly
export their functions at the end. In that example, both question and answer are local and therefore private to
the module, but answer has been explicitly exported. (If you invoke LDoc with the -a flag on this file, you will
see the documentation for the unexported function as well.)

@set is a powerful tag which assigns a configuration variable to a value just for this module. Saying @set
no_summary=true in a module comment will temporarily disable summary generation when the template is
expanded. Generally configuration variables that effect template expansion are modifiable in this way. For
instance, if you wish that the contents of a particular module be sorted, then @set sort=true will do it just for
that module.

Sections
LDoc supports explicit sections. By default, the implicit sections correspond to the pre-existing types in a
module: ‘Functions’, ‘Tables’ and ‘Fields’ (There is another default section ‘Local Functions’ which only appears
if LDoc is invoked with the --all flag.) But new sections can be added; the first mechanism is when you
define a new type (say ‘macro’). Then a new section (‘Macros’) is created to contain these types.

There is also a way to declare ad-hoc sections using the @section tag. The need occurs when a module has a
lot of functions that need to be put into logical sections.

A section doc-comment has the same structure as a normal doc-comment; the summary is used as the new
section title, and the description will be output at the start of the function details for that section; the name is
not used, but must be unique.

Sections appear under ‘Contents’ on the left-hand side. See the winapi documentation for an example of how
this looks.

Arguably a module writer should not write such very long modules, but it is not the job of the documentation
tool to limit the programmer!

A specialized kind of section is type: it is used for documenting classes. The functions (or fields) within a type
section are considered to be the methods of that class.

 --- File functions.

 -- Useful utilities for opening foobar format files.

 -- @section file

 --- open a file

 ...

 --- read a file

 ...

 --- Encoding operations.

 -- Encoding foobar output in different ways.

 -- @section encoding

 ...

 --- A File class.

 -- @type File

https://github.com/stevedonovan/LDoc/blob/master/ldoc.lua
http://stevedonovan.github.io/ldoc/examples/three.lua.html#
http://stevedonovan.github.com/winapi/api.html

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

(In an ideal world, we would use the word ‘class’ instead of ‘type’, but this would conflict with the LuaDoc class
tag.)

A section continues until the next section is found, @section end, or end of file.

You can put items into an implicit section using the @within tag. This allows you to put adjacent functions in
different sections, so that you are not forced to order your code in a particular way.

With 1.4, there is another option for documenting classes, which is the top-level type classmod. It is intended
for larger classes which are implemented within one module, and the advantage that methods can be put into
sections.

Sometimes a module may logically span several files, which can easily happen with large There will be a
master module with name ‘foo’ and other files which when required add functions to that module. If these files
have a @submodule tag, their contents will be placed in the master module documentation. However, a current
limitation is that the master module must be processed before the submodules.

See the tests/submodule example for how this works in practice.

Differences from LuaDoc
LDoc only does ‘module’ documentation, so the idea of ‘files’ is redundant.

One added convenience is that it is easier to name entities:

becomes:

This is because type names (like ‘function’, ‘module’, ‘table’, etc) can function as tags. LDoc also provides a
means to add new types (e.g. ‘macro’) using a configuration file which can be shipped with the source. If you
become bored with typing ‘param’ repeatedly then you can define an alias for it, such as ‘p’. This can also be
specified in the configuration file.

LDoc will also work with C/C++ files, since extension writers clearly have the same documentation needs as
Lua module writers.

LDoc allows you to attach a type to a parameter or return value with tparam or treturn, and gives the
documenter the option to use Markdown to parse the contents of comments. You may also include code
examples which will be prettified, and readme files which will be rendered with Markdown and contain prettified
code blocks.

Adding new Tags
LDoc tries to be faithful to LuaDoc, but provides some extensions. Aliases for tags can be defined, and new
types declared.

 --- get the modification time.

 -- @return standard time since epoch

 function File:mtime()

 ...

 end

 -- a simple module.

 -- (LuaDoc)

 -- @class module

 -- @name simple

 -- a simple module.

 -- (LDoc)

 -- @module simple

 --- zero function. Two new ldoc features here; item types

 -- can be used directly as tags, and aliases for tags

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

Here an alias for ‘param’ has been defined. If a file config.ld is found in the source, then it will be loaded as
Lua data. For example, the configuration for the above module provides a title and defines an alias for ‘param’:

Extra tag types can be defined:

And then used as any other type:

This will also create a new module section called ‘Macros’.

If your new type has arguments or fields, then specify the name:

(The third argument means that this is not a project level tag)

Then you may say:

And the arguments will be displayed under the subsection ‘param’

Inferring more from Code
The qualified name of a function will be inferred from any function keyword following the doc comment. LDoc
goes further with this kind of code analysis, however.

Instead of:

you can write:

 -- can be defined in config.ld.

 -- @function zero_fun

 -- @p k1 first

 -- @p k2 second

 title = "testmod docs"

 project = "testmod"

 alias("p","param")

 new_type("macro","Macros")

 -- A useful macro. This is an example of a custom type.

 -- @macro first_macro

 -- @see second_function

 new_type("macro","Macros",false,"param")

 -- A macro with arguments.

 -- @macro second_macro

 -- @param x the argument

 --- first table.

 -- @table one

 -- @field A alpha

 -- @field B beta

 M.one = {

 A = 1,

 B = 2;

 }

 --- first table

 -- @table one

 M.one = {

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

Simularly, function parameter comments can be directly used:

As always, explicit tags can override this behaviour if it is inappropriate.

Extension modules written in C
LDoc can process C/C++ files:

Both /** and /// are recognized as starting a comment block. Otherwise, the tags are processed in exactly the
same way. It is necessary to specify that this is a function with a given name, since this cannot be reliably be
inferred from code. Such a file will need a module comment, which is treated exactly as in Lua.

An unknown extension can be associated with a language using a call like
add_language_extension('lc','c') in config.ld. (Currently the language can only be ‘c’ or ‘lua’.)

An LDoc feature which is particularly useful for C extensions is module merging. If several files are all marked
as @module lib then a single module lib is generated, containing all the docs from the separate files. For this,
use merge=true.

See mylib.c for the full example.

Moonscript Support
1.4 introduces basic support for Moonscript. Moonscript module conventions are just the same as Lua, except
for an explicit class construct. list.moon shows how @classmod can declare modules that export one class, with
metamethods put explicitly into a separate section.

Basic Usage
For example, to process all files in the ‘lua’ directory:

Thereafter the doc directory will contain index.html which points to individual modules in the modules
subdirectory. The --dir flag can specify where the output is generated, and will ensure that the directory
exists. The output structure is like LuaDoc: there is an index.html and the individual modules are in the
modules subdirectory. This applies to all project-level types, so that you can also get scripts, examples and

 A = 1, -- alpha

 B = 2; -- beta

 }

 -- third function. Can also provide parameter comments inline,

 -- provided they follow this pattern.

 function mod1.third_function(

 alpha, -- correction A

 beta, -- correction B

 gamma -- factor C

)

 ...

 end

/***

Create a table with given array and hash slots.

@function createtable

@param narr initial array slots, default 0

@param nrec initial hash slots, default 0

@return the new table

*/

static int l_createtable (lua_State *L) {

....

 $ ldoc lua

 output written to doc/

http://stevedonovan.github.io/ldoc/examples/mylib.c.html#
http://moonscript.org/
http://stevedonovan.github.io/ldoc/examples/list.moon.html#

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

topics directories.

If your modules use module(...) then the module name has to be deduced. If ldoc is run from the root of the
package, then this deduction does not need any help – e.g. if your package was foo then ldoc foo will work as
expected. If we were actually in the foo directory then ldoc -b .. . will correctly deduce the module names.
An example would be generating documentation for LuaDoc itself:

Without the -b setting the base of the package to the parent of the directory, implicit modules like
luadoc.config will be incorrectly placed in the global namespace.

For new-style modules, that don’t use module(), it is recommended that the module comment has an explicit
@module PACKAGE.NAME. If it does not, then ldoc will still attempt to deduce the module name, but may need
help with --package/-b as above.

A special case is if you simply say ‘ldoc .’. Then there must be a config.ld file available in the directory, and it
can specify the file:

file can of course point to a directory, just as with the --file option. This mode makes it particularly easy for
the user to build the documentation, by allowing you to specify everything explicitly in the configuration.

In config.ld, file may be a Lua table, containing file names or directories; if it has an exclude field then that
will be used to exclude files from the list, for example {'examples', exclude = {'examples/slow.lua'}}.

A particular configuration file can be specified with the -c flag. Configuration files don’t have to contain a file
field, but in that case LDoc does need an explicit file on the command line. This is useful if you have some
defaults you wish to apply to all of your docs.

Markdown Support
format = 'markdown' can be used in your config.ld and will be used to process summaries and descriptions;
you can also use the -f flag. This requires a markdown processor. LDoc knows how to use:

markdown.lua a pure Lua processor by Niklas Frykholm. For convenience, LDoc comes with a copy
of markdown.lua.
lua-discount, a faster alternative (installed with luarocks install lua-discount). lua-discount uses
the C discount Markdown processor which has more features than the pure Lua version, such as
PHP-Extra style tables.
lunamark, another pure Lua processor, faster than markdown, and with extra features (luarocks
install lunamark).

You can request the processor you like with format = 'markdown|discount|lunamark|plain|backticks', and
LDoc will attempt to use it. If it can’t find it, it will look for one of the other markdown processors; the original
markdown.lua ships with LDoc, although it’s slow for larger documents.

Even with the default of ‘plain’ some minimal processing takes place, in particular empty lines are treated as
line breaks. If the ‘backticks’ formatter is used, then it’s equivalent to using
‘process_backticks=trueinconfig.ldand backticks will be expanded into documentation links
like@{ref}and converted intoref otherwise.

This formatting applies to all of a project, including any readmes and so forth. You may want Markdown for this
‘narrative’ documentation, but not for your code comments. plain=true will switch off formatting for code.

Processing Single Modules
--output can be used to give the output file a different name. This is useful for the special case when a single
module file is specified. Here an index would be redundant, so the single HTML file generated contains the
module documentation.

 $ ldoc -b .. /path/to/luadoc

 file = "mymod.lua"

 title = "mymod documentation"

 description = "mymod does some simple but useful things"

 $ ldoc mylib.lua --> results in doc/index.html

 $ ldoc --output mylib mylib.lua --> results in doc/mylib.html

http://www.frykholm.se/files/markdown.lua
http://asbradbury.org/projects/lua-discount/
http://www.pell.portland.or.us/%7Eorc/Code/discount/
http://jgm.github.com/lunamark/

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

The default sections used by LDoc are ‘Functions’, ‘Tables’ and ‘Fields’, corresponding to the built-in types
‘function’, ‘table’ and ‘field’. If config.ld contains something like new_type("macro","Macros") then this adds a
new section ‘Macros’ which contains items of ‘macro’ type – ‘macro’ is registered as a new valid tag name. The
default template then presents items under their corresponding section titles, in order of definition.

Getting Help about a Module
There is an option to simply dump the results of parsing modules. Consider the C example
tests/example/mylib.c':

This is useful to quickly check for problems; here we see that createable did not have a return tag.

LDoc takes this idea of data dumping one step further. If used with the -m flag it will look up an installed Lua
module and parse it. If it has been marked up in LuaDoc-style then you will get a handy summary of the
contents:

You can specify a fully qualified function to get more information:

LDoc knows about the basic Lua libraries, so that it can be used as a handy console reference:

 $ ldoc --output mylib --dir html mylib.lua --> results in html/mylib.html

$ ldoc --dump mylib.c

module: mylib A sample C extension.

Demonstrates using ldoc's C/C++ support. Can either use /// or /*** */ etc.

function createtable(narr, nrec)

Create a table with given array and hash slots.

narr initial array slots, default 0

nrec initial hash slots, default 0

function solve(a, b, c)

Solve a quadratic equation.

a coefficient of x^2

b coefficient of x

c constant

return {"first root","second root"}

$ ldoc -m pl.pretty

module: pl.pretty Pretty-printing Lua tables.

* read(s) - read a string representation of a Lua table.

* write(tbl, space, not_clever) - Create a string representation of a Lua table.

* dump(t, ...) - Dump a Lua table out to a file or stdout.

$ ldoc -m pl.pretty.write

function write(tbl, space, not_clever)

create a string representation of a Lua table.

tbl {table} Table to serialize to a string.

space {string} (optional) The indent to use.

 Defaults to two spaces.

not_clever {bool} (optional) Use for plain output, e.g {['key']=1}.

 Defaults to false.

$> ldoc -m assert

function assert(v, message)

Issues an error when the value of its argument `v` is false (i.e.,

 nil or false); otherwise, returns all its arguments.

`message` is an error

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

Thanks to Mitchell’s Textadept project, LDoc has a set of .luadoc files for all the standard tables, plus
LuaFileSystem and LPeg.

Anatomy of a LDoc-generated Page
winapi can be used as a good example of a module that uses extended LDoc features.

The navigation section down the left has several parts:

The project name (‘project’ in the config)
A project description (‘description’)
‘'Contents’‘ of the current page
'‘Modules’‘ listing all the modules in this project

Note that description will be passed through Markdown, if it has been specified for the project. This gives you
an opportunity to make lists of links, etc; any ‘##’ headers will be formatted like the other top-level items on the
navigation bar.

‘Contents’ is automatically generated. It will contain any explicit sections, if they have been used. Otherwise
you will get the usual categories: ‘Functions’, ‘Tables’ and ‘Fields’.

‘Modules’ will appear for any project providing Lua libraries; there may also be a ‘Scripts’ section if the project
contains Lua scripts. For example, LuaMacro has a driver script luam in this section. The builtin module only
defines macros, which are defined as a custom tag type.

The content section on the right shows:

The module summary and description
The contents summary, per section as above
The detailed documentation for each item

As before, the description can use Markdown. The summary contains the contents of each section as a table,
with links to the details. This is where the difference between an item’s summary and an item’s description is
important; the first will appear in the contents summary. The item details show the item name and its summary
again, followed by the description. There are then sections for the following tags: ‘param’, ‘usage’, ‘return’ and
‘see’ in that order. (For tables, ‘Fields’ is used instead of ‘Parameters’ but internally fields of a table are stored
as the ‘param’ tag.)

By default, the items appear in the order of declaration within their section. If sort=true then they will be sorted
alphabetically. (This can be set per-module with @set.)

You can of course customize the default template, but there are some parameters that can control what the
template will generate. Setting one=true in your configuration file will give a one-column layout, which can be
easier to use as a programming reference. You can suppress the contents summary with no_summary.

Customizing the Page
A basic customization is to override the default UTF-8 encoding using charset. For instance, Brazillian

 message; when absent, it defaults to "assertion failed!"

v

message

$> ldoc -m lfs.lock

function lock(filehandle, mode, start, length)

Locks a file or a part of it.

This function works on open files; the file

 handle should be specified as the first argument. The string mode could be

 either r (for a read/shared lock) or w (for a write/exclusive lock). The

 optional arguments start and length can be used to specify a starting point

 and its length; both should be numbers.

 Returns true if the operation was successful; in case of error, it returns

 nil plus an error string.

filehandle

mode

start

length

http://foicica.com/textadept/
http://keplerproject.github.com/luafilesystem/
http://www.inf.puc-rio.br/%7Eroberto/lpeg/lpeg.html
http://stevedonovan.github.com/winapi/api.html
http://stevedonovan.github.com/LuaMacro/docs/api.html
http://stevedonovan.github.com/LuaMacro/docs/modules/macro.builtin.html

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

software would find it useful to put charset='ISO-8859-1' in config.ld, or use the @charset tag for individual
files.

Setting no_return_or_parms to true will suppress the display of ‘param’ and ‘return’ tags. This may appeal to
programmers who dislike the traditional @tag soup xDoc style and prefer to comment functions just with a
description. This is particularly useful when using Markdown in a stylized way to specify arguments:

Here I've chosen to italicise parameter names; the main thing is to be consistent.

This style is close to the Python documentation standard, especially when used with no_summary.

It is also very much how the Lua documentation is ordered. For instance, this configuration file formats the
built-in documentation for the Lua global functions in a way which is close to the original:

Generally, using Markdown gives you the opportunity to structure your documentation in any way you want;
particularly if using lua-discount and its table syntax; the desired result can often be achieved then by using a
custom style sheet.

Examples
It has been long known that documentation generated just from the source is not really adequate to explain
how to use a library. People like reading narrative documentation, and they like looking at examples. Previously
I found myself dealing with source-generated and writer-generated documentation using different tools, and
having to match these up.

LDoc allows for source examples to be included in the documentation. For example, see the online
documentation for winapi. The function utf8_expand has a @see reference to ‘testu.lua’ and following that link
gives you a pretty-printed version of the code.

The line in the config.ld that enables this is:

That is, all files in the examples folder are to be pretty-printed, except for slow.lua which is meant to be called
from one of the examples. To link to an example, use a reference like @{testu.lua} which resolves to
‘examples/testu.lua.html’.

Examples may link back to the API documentation, for instance the example input.lua has a
@{spawn_process} inline reference.

By default, LDoc uses a built-in Lua code ‘prettifier’. Reference links are allowed in comments, and also in code
if they're enclosed in backticks. Lua and C are known languages.

lxsh can be used (available from LuaRocks) if you want something more powerful. pretty='lxsh' will cause
lxsh to be used, if available.

Readme files
Like all good Github projects, Winapi has a readme.md:

This goes under the ‘Topics’ global section; the ‘Contents’ of this document is generated from the second-level
(##) headings of the readme.

Readme files are always processed with the current Markdown processor, but may also contain @{ref}

 -- This extracts the shortest common substring from the strings _s1_ and _s2_

 function M.common_substring(s1,s2)

 project = 'Lua'

 description = 'Lua Standard Libraries'

 file = {'ldoc/builtin',exclude = {'ldoc/builtin/globals.lua'}}

 no_summary = true

 no_return_or_parms = true

 format = 'discount'

 examples = {'examples', exclude = {'examples/slow.lua'}}

 readme = "readme.md"

http://docs.python.org/library/array.html#module-array
http://michelf.com/projects/php-markdown/extra/#table
http://stevedonovan.github.com/winapi/api.html
https://github.com/xolox/lua-lxsh

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

references back to the documentation and to example files. Any symbols within backticks will be expanded as
references, if possible. As with doc comments, a link to a standard Lua function like @{os.execute} will work as
well. Any code sections will be pretty-printed as Lua, unless the first indented line is ‘@plain’. (See the source
for this readme to see how it’s used.)

Another name for readme is topics, which is more descriptive. From LDoc 1.2, readme/topics can be a list of
documents. These act as a top-level table-of-contents for your documentation. Currently, if you want them in a
particular order, then use names like 01-introduction.md etc, which sort appropriately.

The first line of a document may be a Markdown # title. If so, then LDoc will regard the next level as the
subheadings, normally second-level ##. But if the title is already second-level, then third-level headings will be
used ###, and so forth. The implication is that the first heading must be top-level relative to the headings that
follow, and must start at the first line.

A reference like @{string.upper} is unambiguous, and will refer to the online Lua manual. In a project like
Penlight, it can get tedious to have to write out fully qualified names like @{pl.utils.printf}. The first
simplification is to use the package field to resolve unknown references, which in this case is ‘pl’. (Previously
we discussed how package is used to tell LDoc where the base package is in cases where the module author
wishes to remain vague, but it does double-duty here.) A further level of simplification comes from the @lookup
directive in documents, which must start at the first column on its own line. For instance, if I am talking about
pl.utils, then I can say @lookup utils and thereafter references like @{printf} will resolve correctly.

If you look at the source for this document, you will see a @lookup doc.md which allows direct references to
sections like this with @{Readme_files|this}.

Remember that the default is for references in backticks to be resolved; unlike @ references, it is not an error if
the reference cannot be found.

The sections of a document (the second-level headings) are also references. This particular section can be
refered to as @{doc.md.Resolving_References_in_Documents} – the rule is that any non-alphabetic character
is replaced by an underscore.

Any indented blocks are assumed to be Lua, unless their first line is @plain. New with 1.4 is github-markdown-
style fenced code blocks, which start with three backticks optionally followed by a language. The code
continues until another three backticks is found: the language can be c,‘cpp’ or cxx for C/C++, anything else is
Lua.

Tag Modifiers
Ay tag may have tag modifiers. For instance, you may say @param[type=number] and this associates the
modifier type with value number with this particular param tag. A shorthand has been introduced for this
common case, which is @tparam <type> <parmname> <comment>; in the same way @treturn is defined.

This is useful for larger projects where you want to provide the argument and return value types for your API,
in a structured way that can be easily extracted later.

These types can be combined, so that “?string|number” means “ether a string or a number”; “?string” is short
for “?|nil|string”. However, for this last case you should usually use the opt modifier discussed below.

There is a useful function for creating new tags that can be used in config.ld:

That is, “@string” will now have the same meaning as “@tparam string”; this also applies to the optional type
syntax “?|T1|T2”.

From 1.3, the following standard type aliases are predefined:

string

number

int

bool Lua ‘boolean’ type
func ‘function’ (using ‘function’ would conflict with the type)
tab ‘table’
thread

When using ‘colon-style’ (colon.lua) it’s possible to directly use types by prepending them with ‘!’; ‘?’ is also
naturally understood.

<type>

 tparam_alias('string','string')

http://stevedonovan.github.io/ldoc/examples/colon.lua.html#

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

The exact form of is not defined, but here is one suggested scheme:

number — a plain type
Bonzo — a known type; a reference link will be generated
{string,number} — a ‘list’ tuple of two values, built from type expressions
{A=string,N=number} — a ‘struct’, ditto (But it’s often better to create a named table and refer to it)
{Bonzo,...} — an array of Bonzo objects
{[string]=Bonzo,...} — a map of Bonzo objects with string keys
Array(Bonzo) — (assuming that Array is a container type)

The alias function within configuration files has been extended so that alias tags can be defined as a tag plus
a set of modifiers. So tparam is defined as:

As an extension, you're allowed to use ‘@param’ tags in table definitions. This makes it possible to use type
alias like ‘@string’ to describe fields, since they will expand to ‘param’.

Another modifier understood by LDoc is opt. For instance,

This modifier can also be used with type aliases. If a value is given for opt then LDoc can present this as the
default value for this optional argument.

(See four.lua, rendered here)

An experimental feature in 1.4 allows different ‘return groups’ to be defined. There may be multiple @return
tags, and the meaning of this is well-defined, since Lua functions may return multiple values. However, being a
dynamic language it may return a single value if successful and two values (nil,an error message) if there is
an error. This is in fact the convention for returning ‘normal’ errors (like ‘file not found’) as opposed to
parameter errors (like ‘file must be a string’) that are often raised as errors.

Return groups allow a documenter to specify the various possible return values of a function, by specifying
number modifiers. All return tags with the same digit modifier belong together as a group:

This is the first function in multiple.lua, and the output shows how return groups are presented, with an Or
between the groups.

 alias('tparam',{'param',modifiers={type="$1"}})

 ---- testing [opt]

 -- @param one

 -- @param[opt] two

 -- @param three

 -- @param[opt] four

 function two (one,two,three,four)

 end

 ----> displayed as: two (one [, two], three [, four])

 --- a function with typed args.

 -- If the Lua function has varargs, then

 -- you may document an indefinite number of extra arguments!

 -- @string name person's name

 -- @int age

 -- @string[opt='gregorian'] calender optional calendar

 -- @int[opt=0] offset optional offset

 -- @treturn string

 function one (name,age,...)

 end

 ----> displayed as: one (name, age [, calender='gregorian' [, offset=0]])

 -- function with return groups.

 -- @return[1] result

 -- @return[2] nil

 -- @return[2] error message

 function mul1() ... end

http://stevedonovan.github.io/ldoc/examples/four.lua.html#
http://stevedonovan.github.io/ldoc/examples/four
http://stevedonovan.github.io/ldoc/examples/multiple.lua.html#
http://stevedonovan.github.io/ldoc/examples/multiple

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

This is rather clumsy, and so there is a shortcut, the @error tag which achieves the same result, with helpful
type information.

Currently the type,opt and <digit> modifiers are the only ones known and used by LDoc when generating
HTML output. However, any other modifiers are allowed and are available for use with your own templates or
for extraction by your own tools.

Fields allowed in config.ld
Same meaning as the corresponding parameters:

file a file or directory containing sources. In config.ld this can also be a table of files and
directories.
project name of project, used as title in top left
title page title, default ‘Reference’
package explicit base package name; also used for resolving references in documents
all show local functions, etc as well in the docs
format markup processor, can be ‘plain’ (default), ‘markdown’ or ‘discount’
output output name (default ‘index’)
dir directory for output files (default ‘doc’)
colon use colon style, instead of @ tag style
boilerplate ignore first comment in all source files (e.g. license comments)
ext extension for output (default ‘html’)
one use a one-column layout
style, template: together these specify the directories for the style and and the template. In config.ld
they may also be true, meaning use the same directory as the configuration file.
merge allow documentation from different files to be merged into modules without explicit
@submodule tag

These only appear in the configuration file:

description a short project description used under the project title
full_description when you really need a longer project description
examples a directory or file: can be a table
readme or topics readme files (to be processed with Markdown)
pretty code prettify ‘lua’ (default) or ‘lxsh’
charset use if you want to override the UTF-8 default (also @charset in files)
sort set if you want all items in alphabetical order
no_return_or_parms don’t show parameters or return values in output
backtick_references whether references in backticks will be resolved. Happens by default when using
Markdown. When explicit will expand non-references in backticks into <code> elements
plain set to true if format is set but you don’t want code comments processed
wrap ??
manual_url point to an alternative or local location for the Lua manual, e.g.
‘file:///D:/dev/lua/projects/lua-5.1.4/doc/manual.html’
no_summary suppress the Contents summary
custom_see_handler function that filters see-references
not_luadoc set to true if the docs break LuaDoc compatibility
no_space_before_args set to true if you do not want a space between a function’s name and its
arguments.
template_escape overrides the usual ‘#’ used for Lua code in templates. This needs to be changed if
the output format is Markdown, for instance.

Available functions are:

alias(a,tag) provide an alias a for the tag tag, for instance p as short for param
add_language_extension(ext,lang) here lang may be either ‘c’ or ‘lua’, and ext is an extension to be
recognized as this language
add_section

new_type(tag,header,project_level) used to add new tags, which are put in their own section header.
They may be ‘project level’.
tparam_alias(name,type) for instance, you may wish that Object becomes a new tag alias that means

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

@tparam Object.
custom_see_handler(pattern,handler). If a reference matches pattern, then the extracted values will
be passed to handler. It is expected to return link text and a suitable URI. (This match will happen
before default processing.)

Annotations and Searching for Tags
Annotations are special tags that can be used to keep track of internal development status. The known
annotations are ‘todo’, ‘fixme’ and ‘warning’. They may occur in regular function/table doc comments, or on
their own anywhere in the code.

Although not currently rendered by the template as HTML, they can be extracted by the --tags command,
which is given a comma-separated list of tags to list.

Generating HTML
LDoc, like LuaDoc, generates output HTML using a template, in this case ldoc/html/ldoc_ltp.lua. This is
expanded by the powerful but simple preprocessor devised originally by Rici Lake which is now part of
Lake](http://lua-users.org/wiki/SlightlyLessSimpleLuaPreprocessor) which is now part of Penlight. There are two
rules – any line starting with ‘#’ is Lua code, which can also be embedded with ‘$(…)’.

This is then styled with ldoc.css. Currently the template and stylesheet is very much based on LuaDoc, so the
results are mostly equivalent; the main change that the template has been more generalized. The default
location (indicated by ‘!’) is the directory of ldoc_ltp.lua.

You will notice that the built-in templates and stylesheets end in .lua; this is simply to make it easier for LDoc
to find them. Where you are customizing one or both of the template and stylesheet, they will have their usual
extensions.

You may customize how you generate your documentation by specifying an alternative style sheet and/or
template, which can be deployed with your project. The parameters are --style and --template, which give
the directories where ldoc.css and ldoc.ltp are to be found. If config.ld contains these variables, they are
interpreted slightly differently; if they are true, then it means ‘use the same directory as config.ld’; otherwise
they must be a valid directory relative to the ldoc invocation.

An example of fully customized documentation is tests/example/style: this is what you could call ‘minimal
Markdown style’ where there is no attempt to tag things (except emphasizing parameter names). The narrative
alone can to be sufficient, if it is written well.

There are two other stylesheets available in LDoc since 1.4; the first is ldoc_one.css which is what you get
from one=true and the second is ldoc_pale.css. This is a lighter theme which might give some relief from the

 --- Testing annotations

 -- @module annot1

 ...

 --- first function.

 -- @todo check if this works!

 function annot1.first ()

 if boo then

 end

 --- @fixme what about else?

 end

D:\dev\lua\LDoc\tests> ldoc --tags todo,fixme annot1.lua

d:\dev\lua\ldoc\tests\annot1.lua:14: first: todo check if this works!

d:\dev\lua\ldoc\tests\annot1.lua:19: first-fixme1: fixme what about else?

 <h2>Contents</h2>

 # for kind,items in module.kinds() do

 $(kind)

 # end

http://lua-users.org/wiki/SlightlyLessSimpleLuaPreprocessor

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

heavier colours of the default. You can use this style with style="!pale" or -s !pale. See the Lake
documentation as an example of its use.

Of course, there’s no reason why LDoc must always generate HTML. --ext defines what output extension to
use; this can also be set in the configuration file. So it’s possible to write a template that converts LDoc output
to LaTex, for instance. The separation of processing and presentation makes this kind of new application
possible with LDoc.

From 1.4, LDoc has some limited support for generating Markdown output, although only for single files
currently. Use --ext md for this. ‘ldoc/html/ldoc_md_ltp.lua’ defines the template for Markdown, but this can be
overriden with template as above. It’s another example of minimal structure, and provides a better place to
learn about these templates than the rather elaborate default HTML template.

Internal Data Representation
The --dump flag gives a rough text output on the console. But there is a more customizeable way to process
the output data generated by LDoc, using the --filter parameter. This is understood to be a fully qualified
function (module + name). For example, try

to see a raw dump of the data. (Simply using dump as the value here would be a shorthand for
pl.pretty.dump.) This is potentially very powerful, since you may write arbitrary Lua code to extract the
information you need from your project.

For instance, a file custom.lua like this:

Can be used like so:

The basic data structure is straightforward: it is an array of ‘modules’ (project-level entities, including scripts)
which each contain an item array (functions, tables and so forth).

For instance, to find all functions which don’t have a @return tag:

The internal naming is not always so consistent; ret corresponds to @return, and params corresponds to
@param. item.params is an array of the function parameters, in order; it is also a map from these names to the
individual descriptions of the parameters.

item.modifiers is a table where the keys are the tags and the values are arrays of modifier tables. The
standard tag aliases tparam and treturn attach a type modifier to their tags.

 $ ldoc --filter pl.pretty.dump mylib.c

 return {

 filter = function (t)

 for _, mod in ipairs(t) do

 print(mod.type,mod.name,mod.summary)

 end

 end

 }

 ~/LDoc/tests/example$ ldoc --filter custom.filter mylib.c

 module mylib A sample C extension.

 return {

 filter = function (t)

 for _, mod in ipairs(t) do

 for _, item in ipairs(mod.items) do

 if item.type == 'function' and not item.ret then

 print(mod.name,item.name,mod.file,item.lineno)

 end

 end

 end

 end

 }

http://stevedonovan.github.io/lake/modules/lakelibs.html

LDoc documentation

http://stevedonovan.github.io/ldoc/topics/doc.md.html[12/19/2013 11:29:34 AM]

generated by LDoc 1.4.0

http://github.com/stevedonovan/LDoc

	stevedonovan.github.io
	LDoc documentation

